一元二次方程教学设计【通用6篇】

一元二次方程教学设计 篇一

在教学一元二次方程时,老师需要设计一些有趣且有效的教学方法,让学生更容易理解和掌握这一概念。以下是我为一元二次方程设计的教学计划:

1. 引入:在开始教授一元二次方程之前,我会通过一个生动有趣的故事引入这一概念。例如,我可以设计一个故事情节,让学生在其中扮演解决一元二次方程问题的英雄,激发他们的学习兴趣和动力。

2. 概念讲解:在引入之后,我会简单地介绍一元二次方程的定义和基本形式,让学生对这一概念有一个整体的认识。我会通过实际例子和图表来说明一元二次方程的含义,帮助学生建立起概念框架。

3. 解题方法:接着,我会详细讲解一元二次方程的解题方法。我会通过实例演示如何将方程转化为标准形式,然后应用求根公式或配方法等方式求解方程。我会在课堂上反复强调解题的步骤和技巧,让学生掌握解题的方法。

4. 练习与巩固:在讲解完解题方法后,我会设计一些练习题让学生进行巩固。这些练习题可以包括选择题、填空题和解答题等不同类型,以帮助学生全面掌握一元二次方程的解题技巧。

5. 拓展与应用:最后,我会设计一些拓展性的问题和应用题,让学生在实际问题中应用一元二次方程的知识。这些问题可以涉及到生活中的各种场景,如抛物线运动、优化问题等,帮助学生将所学知识运用到实践中。

通过以上的教学设计,我相信学生们会更加轻松地理解和掌握一元二次方程的知识,提高他们的学习兴趣和成绩。

一元二次方程教学设计 篇二

在教学一元二次方程时,老师需要根据学生的实际情况和学习特点设计合适的教学方法,以提高教学效果。以下是我为一元二次方程设计的教学计划:

1. 观察与启发:在开始教学一元二次方程之前,我会让学生观察一些实际生活中的问题,并引导他们发现这些问题背后隐藏的一元二次方程规律。例如,我可以让学生观察抛物线的形状和运动轨迹,引导他们发现抛物线与一元二次方程的联系。

2. 探究与发现:在引发学生兴趣后,我会设计一些探究性的问题,让学生通过实际操作和探索来发现一元二次方程的特点和性质。例如,我可以设计一个实验让学生观察不同参数对一元二次方程图像的影响,让他们通过实验数据找到规律。

3. 合作与讨论:在学生探究的过程中,我会鼓励他们进行小组合作和讨论,共同解决一元二次方程问题。通过小组合作,学生可以相互交流和学习,提高解题效率和思维能力。

4. 反馈与指导:在学生完成探究活动后,我会及时给予他们反馈和指导。我会对学生的解题方法和答案进行评价,帮助他们发现问题和改进,提高解题的准确性和效率。

5. 实践与应用:最后,我会设计一些实际应用题和项目任务,让学生将所学的一元二次方程知识应用到实践中。通过实际应用,学生可以更好地理解一元二次方程的实际意义和应用场景,提高他们的学习兴趣和动力。

通过以上的教学设计,我相信学生们会更深入地理解和掌握一元二次方程的知识,提高他们的数学思维和解题能力,为未来的学习打下坚实的基础。

一元二次方程教学设计 篇三

  教学目标:

  (一)知识与技能:

  1、理解并掌握用配方法解简单的一元二次方程。

  2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。

  (二)过程与方法目标:

  1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。

  2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。

  (三)情感,态度与价值观

  启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。

  教学重点、难点:

  重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。

  难点:通过配方把一元二次方程转化为(x+m)2=n(n≥0)的形式。

  教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境——建立数学模型——巩固与运用——反思、拓展”来展示教学活动。

  教学过程

  学生活动

  设计意图

  一 复习旧知

  用直接开平方法解下列方程:

  (1)9x2=4 (2)( x+3)2=0

  总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n≥0)的方程。

  二 创设情境,设疑引新

  在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。

  例:小明用一段长为 20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?

  三 新知探究

  1 提问:这样的方程你能解吗?

  x2+6x+9=0 ①

  2、提问:这样的方程你能解吗?

  x2+6x+4=0 ②

  思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?

  归纳总结配方法:

  通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配方法。

  配方法的依据:完全平方公式

  配方法的关键:给方程的两边同时加上一次项系数一半的平方

  点拨:先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。

  四 合作讨论,自主探究

  1、 配方训练

  (1) x2+12x+( )=(x+6)2

  (2) x2-12x+( )=(x- )2

  (3) x2+8x+( )=(x+ )2

  (4) x2+mx+( )=(x+ )2

  强调:当一次项系数为负数或分数时,要注意运算的准确性。

  2、将下列方程化为(x+m)2=n

  (n≥0)的形式并计算出X值。

  (1)x2-4x+3=0

  (2)x2+3x-1=0

  解:X2-4X+3=0

  移向:得X2-4X=-3

  配方:得X2-4X+2^2=-3+2^2(两边同时加上一次项系数一半的平方)

  即:(X-2)2=1

  开平方,得:X-2=1或X-2=-1

  所以:X=3或X=1

  方程(2)有学生完成。

  3、巩固训练:课本55页随堂练习第一题。

  五 小结

  1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n(n≥0)的形式,然后两边开平方就可以得到方程的解。

  2、用配方法解二次项系数为一的一元二次方程的一般步骤:

  (1) 移项(常数项移到方程右边)

  (2) 配方(方程两边都加上一次项系数的一半的平方)

  (3) 开平方

  (4) 解出方程的根

  六 布置作业

  习题2.3第1,2题

  两个学生黑板上那解题,剩余学生练习本上计算。

  学生观看课件,思考老师提出的问题,得到:设该矩形的长为x米,依题意得

  x(10-x)=9

  但是发现所列方程无法用直接开平方法解。于是引入新课。

  学生通过观察发现,方程的左边是一个完全平方式,可以化为( x+3)2=0,然后就可以运用上节课学过的直接开平方法解了。

  方程②的左边不是一个完全平方式,于是不能直接开平方。学生陷入思考,给学生充分思考、交流的时间和空间。

  在学生思考的时候,老师引导学生将方程②与方程①进行对比分析,然后得到:

  x2+6x=-4

  x2+6x+9=-4+9

  (x+3)2=5

  从而可以用直接开平方法解,给出完整的解题过程。

  在学生充分思考、讨论的基础上总结:配方时,常数项为一次项系数的一半的平方。

  检查学生的练习情况。小组合作交流。

  学生归纳后教师再做相应的补充和强调。

  学生分组完成方程(2)和课后随堂练习第一题

  学生分组总结本节课知识内容。

一元二次方程教学设计 篇四

  教学目标

  知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。

  过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。

  情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。

  重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。

  难点:把数学问题转化为数学问题。

  关键:从积分表中找出等量关系。

  教具:投影仪。

  教法:探究、讨论、启发式教学。

  教学过程

  一、创设问题情境

  用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)

  二、引入课题

  教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:.

  ① 用式子表示总积分能与胜、负场数之间的数量关系;

  ②某队的胜场总分能等于它的负场总积分么?

  学生充分思考、合作交流,然后教师引导学生分析。

  师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?

  生:从最下面一行可以发现,负一场积1分。

  师:胜一场呢?

  生:2分(有的用算术法、有的用方程各抒己见)

  师:若一个队胜a场,负多少场,又怎样积分?

  生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.

  师:问题②如何解决?

  学生通过计算各队胜、负总分得出结论:不等。

  师:你能用方程说明上述结论么?

  生:老师,没有等量关系。

  师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?

  生:老师,能不能试着让它们相等?

  师:伟大的发明都是在尝试中进行的,试试?

  生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)

  师:x表示什么?可以是分数么?由此你的出什么结论?

  生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的'胜场总积分等于负场总积分。

  师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。

  拓展

  如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?

  师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。

  教师引导学生设未知数,列方程。学生试说。

  生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。

  三、巩固练习

  已知某山区的平均气温与该山的海拔高度的关系见表:

  海拔高度(单位:m)

  100

  200

  300

  400

  平均气温(单位:℃)

  22

  21.5

  21

  20.5

  20

  若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?

  学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。

  四、课堂小结:

  让几个学生谈自己的收获,再让一个学生全面总结。

  五、布置作业:

  课本108页8、9题。

  六、教学反思

  本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。

  由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。

一元二次方程教学设计 篇五

  一、素质教育目标

  (一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.

  (二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.

  二、教学重点、难点

  1.教学重点:学会用列方程的方法解决有关增长率问题.

  2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.

  三、教学步骤

  (一)明确目标.

  (二)整体感知

  (三)重点、难点的学习和目标完成过程

  1.复习提问

  (1)原产量+增产量=实际产量。

  (2)单位时间增产量=原产量×增长率。

  (3)实际产量=原产量×(1+增长率)。

  2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?

  分析:设平均每月的增长率为x

  则2月份的产量是5000+5000x=5000(1+x)(吨)。

  3月份的产量是

  =5000(1+x)2(吨)

  解:设平均每月的增长率为x,据题意得:

  5000(1+x)2=7200

  (1+x)2=1.44

  1+x=±1.2.

  x1=0.2,x2=-2.2(不合题意,舍去)

  取x=0.2=20%

  教师引导,点拨、板书,学生回答

  注意以下几个问题:

  (1)为计算简便、直接求得,可以直接设增长的百分率为x。

  (2)认真审题,弄清基数,增长了,增长到等词语的关系。

  (3)用直接开平方法做简单,不要将括号打开。

  练习1.教材P.42中5

  学生分析题意,板书,笔答,评价

  练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程。

  (1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率。

  (1+x)2=b(把原来的总产值看作是1.)

  (2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数。

  (a(1+x)2=b)

  (3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.

  ((1+x)2=b+1把原来的总产值看作是1.)

  以上学生回答,教师点拨.引导学生总结下面的规律:

  设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ……增长n次后的产值为S=a(1+x)n.

  规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.

  例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?

  分析:设每次降价为x.

  第一次降价后,每件为600-600x=600(1-x)(元)

  第二次降价后,每件为600(1-x)-600(1-x)x

  =600(1-x)2(元).

  解:设每次降价为x,据题意得

  600(1-x)2=384.

  答:平均每次降价为20%

  教师引导学生分析完毕,学生板书,笔答,评价,对比,总结。

  引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b)

  (四)总结、扩展

  1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.

  2.在解方程时,注意巧算;注意方程两根的取舍问题.

  3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.

  四、布置作业

  教材P.42中A8

  五、板书设计

  12.6 一元二次方程应用(三)

  1.数量关系:例1……例2……

  (1)原产量+增产量=实际产量分析:……分析……

  (2)单位时间增产量=原产量×增长率解……解……

  (3)实际产量=原产量(1+增长率)

  2.最后产值、基数、平均增长率、时间的基本关系:

  M=m(1+x)n n为时间

  M为最后产量,m为基数,x为平均增长率

一元二次方程教学设计 篇六

  第一课时

  一、教学目标

  1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

  2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

  3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

  二、重点·难点·疑点及解决办法

  1.教学重点:

  会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

  2.教学难点:

  根据数与数字关系找等量关系。

  3.教学疑点:

  学生对列一元二次方程解应用问题中检验步骤的理解。

  4.解决办法:

  列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

  三、教学过程

  1.复习提问

  (1)列方程解应用问题的步骤?

  ①审题,②设未知数,③列方程,④解方程,⑤答。

  (2)两个连续奇数的表示方法是,(n表示整数)

  2.例题讲解

  例1 两个连续奇数的积是323,求这两个数。

  分析:

  (1)两个连续奇数中较大的奇数与较小奇数之差为2,

  (2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。

  以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

  解法(一) 设较小奇数为x,另一个为,

  据题意,得

  整理后,得

  解这个方程,得。

  由得,由得,

  答:这两个奇数是17,19或者-19,-17。

  解法(二) 设较小的奇数为,则较大的奇数为。

  据题意,得

  整理后,得

  解这个方程,得。

  当时,

  当时,。

  答:两个奇数分别为17,19;或者-19,-17。

  解法(三) 设较小的奇数为,则另一个奇数为。

  据题意,得

  整理后,得

  解得,,或。

  当时,。

  当时,。

  答:两个奇数分别为17,19;-19,-17。

  引导学生观察、比较、分析解决下面三个问题:

  1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?

  2.解题中的x出现了负值,为什么不舍去?

  答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。

  3.选出三种方法中最简单的一种。

  练习1.两个连续整数的积是210,求这两个数。

  2.三个连续奇数的和是321,求这三个数。

  3.已知两个数的和是12,积为23,求这两个数。

  学生板书,练习,回答,评价,深刻体会方程的思想方法。

  例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。

  分析:数与数字的关系是:

  两位数十位数字个位数字。

  三位数百位数字十位数字个位数字。

  解:设个位数字为x,则十位数字为,这个两位数是。

  据题意,得,

  整理,得,

  解这个方程,得(不合题意,舍去)

  当时,

  答:这个两位数是24。

  以上分析,解答,教师引导,板书,学生回答,体会,评价。

  注意:在求得解之后,要进行实际题意的检验。

  练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)

  教师引导,启发,学生笔答,板书,评价,体会。

  四、布置作业

  补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。

  五、板书设计

  探究活动

  将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?

  参考答案:

  精析:此题属于经营问题.设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000

  当时,50+=60,500=400

  当时,50+=80,500=200

  所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个.

相关文章

金钱的魔力教学设计【通用6篇】

作为一无名无私奉献的教育工作者,往往需要进行教学设计编写工作,借助教学设计可使学生在单位时间内能够学到更多的知识。教学设计应该怎么写才好呢?以下是小编为大家收集的金钱的魔力教学设计范文,希望对大家有所...
教学资料2014-02-03
金钱的魔力教学设计【通用6篇】

西门豹教学设计(精选3篇)

【教学目标】 1、学会本课生字,理解重点词句。 2、正确,流利地朗读课文。 3、使学生了解西门豹是怎样破除迷信的,并受到尊重科学的教育。 【教学重点】 了解西门豹破除河伯娶媳妇迷信的经过。 【教学准备...
教学资料2011-06-04
西门豹教学设计(精选3篇)

学习委员年终工作总结(经典6篇)

总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不妨让我们认真地完成总结吧。我们该怎么写总结呢?...
教学资料2016-04-01
学习委员年终工作总结(经典6篇)

最简单绕口令

铁板钉钉1 钉钉板, 板钉钉。 铁钉钉铁板, 铁板钉铁钉。 铁钉钉板钉钉板, 铁板钉钉板钉钉。 调到敌岛打特盗 调到敌岛打特盗, 特盗太叼投短刀。 挡推顶打短刀掉, 踏盗得刀盗打倒。 《画凤凰》2 粉...
教学资料2013-09-05
最简单绕口令

《蜗牛与黄鹂鸟》的教学反思

音乐是一门听觉艺术,因此“听”应作为中小学生音乐教育的一条主线。如果说音乐欣赏课是培养学生听的审美能力,那么听唱培养的则是学生的记忆力与再现能力。 在学习歌曲《蜗牛与黄鹂鸟》一课时,我根据小学低年级的...
教学资料2014-02-07
《蜗牛与黄鹂鸟》的教学反思

二年级乘法的教学反思

作为一位优秀的老师,教学是我们的工作之一,写教学反思能总结教学过程中的很多讲课技巧,那么写教学反思需要注意哪些问题呢?下面是小编精心整理的二年级关于乘法的教学反思,仅供参考,大家一起来看看吧。认识乘法...
教学资料2012-03-07
二年级乘法的教学反思