角的度量教学设计
设计理念:
数学教学活动是建立在学生的认知发展水平和已有知识经验基础上的。教师要激发学生的学习兴趣,向学生提供从事数学活动的机会,帮助他们在自主探索和合作交流中掌握基本的数学知识与技能、数学思想与方法,总结基本的数学活动经验。学生是学习的主人,教师是学习的组织者、引导者与合作者。
教学内容:
《义务教育课程标准实验教科书数学》(人教版)四年级上册第37—38页。
教学目标:
1.认识量角器的计量单位,了解量角器的构造特点,掌握正确的量角方法,正确地读写角的度数。
2.经历量角器的形成和量角方法的探索过程,感受量角的意义。
3.通过观察、操作、思考、交流等活动,进一步培养学生的创新意识和
实践能力。教学重、难点:
掌握量角的方法及要领,知道量角器的构造原理及特点
学情与教材分析:
角的度量是测量教学中难度较大的一个知识点。教材把这部分安排在学生初步认识了角,明确了角的概念,知道角有大小之分的基础上学习本节课的知识。学生在日常生活中接触了很多的大小不同的角,但对角的度量的知识生活中接触很少,显得比较抽象。小学四年级的学生抽象思维虽然有一定的发展,但依然以形象具体思维为主,分析、综合、归纳、概括能力较弱,有待进一步培养。
教学准备:
多媒体课件,两张练习纸,量角工具(单个小角和半圆工具及量角器)
教学过程:
一、比较两个角的大小,引发度量的需求
1.教师出示活动角,引导学生演示将角变大、变小。
师:你们还记得这位老朋友吗?
生:活动角。
师:谁能将这个角变大或变小。(生按老师的要求变大或变小。)
师:看来角的大小与两条边叉开的大小有关,两边叉开的程度越大角就越大,两边叉开的程度越小角就越小。
2.教师在黑板上画两个角,要求学生通过观察判断它们的大小。
师:仔细观察黑板上的两个角。哪个角大?
生:∠1大。
师:眼力不错,老师不光想知道哪个角大,还想知道具体大出的部分。有办法解决吗?
生:用活动角量一量。
3、用活动角量角。
师:那就用你的活动角比一比。(学生各自操作)谁到黑板上来比一比。
师:注意观察,他是怎么比的。用活动角比较这两个角的大小时要注意什么?(突出顶点重合、边重合)
生:活动角的顶点要和量的角的顶点对齐,一条边要和量的角的一边重合,然后固定好,照这样再量另一个角,就能看出∠1比∠2大出的部分。
生:比的时候要注意顶点对齐,一边重合。
[设计意图:本环节激活了旧知——复习角的大小的含义,唤醒学生对角的大小的度量的高度关注,为用单位角量角的大小做好铺垫;复习用活动角比较角的大小以及比较角的大小时注意“点对点,边对边",这实际上是用量角器量角的方法的雏形,因此需要重点关注。]
二、初探角的度量方法,了解量角工具产生的历程。
1.用同样大的小角(10°角)来比较两个角的大小,激发学生度量角的需求。
(1)用同样大小的小角度量两个角的大小
师:老师还想知道∠1比∠2大了多少个这样的小角,你能利用这些同样大小的小角,度量出∠1出比∠2大了几个这样的小角吗?(指名学生到黑板上操作)。
(2)小组合作,度量两角的大小。(教师深入小组指导,一个小组上黑板上操作。)
(3)交流反馈:度量的方法。
师:我们一起交流一下好吗。那个角大,大了几个这样的小角?
生:∠1比∠2大了一个这样的小角。
师:你们是怎样度量的?
生:所有小角的顶点都要和被量的角的顶点重合,摆放第一个小角时,一条边要与被量的角的一边重合。挨着往上摆。
小结:度量的时候将每个小角的顶点和要量的角的顶点对齐,摆的第一个小角的一边要和要量的角的一边重合,挨个往上摆,这样就能量出要量的角里含有几个这样的小角。
(4)感受用小角度量∠1与∠2大小的优点。
师:用同样大小的小角度量这两个角的优点是什么?
生:能知道∠1比∠2大了1个小角。
小结:用同样大小的小角度量这两个角不仅可以量出两个角的大小,而且还可以知道∠1比∠2大了几个这样的小角,解决的数学问题更加多了。
师:如果用这样的方法去度量一个更大的角,你有什么感觉?
生:太麻烦了。
师:你能想个办法改进一下,量的时候摆一次就能量出一个较大的角里含有几个这样的小角吗?
生:把这些小角用胶带纸粘起来。
师:这个办法可以吗?是个会创造的孩子。
2.把单位小角拼成半圆,构造最简单的量角工具。
师:按照你们的创意,我们就把这10个同样大小的小角粘在一起就会形成这样的量角工具。(课件演示粘成的半圆量角工具)
师:这样的量角工具,这些小角的顶点到哪里去了?
生:到了半圆的中间。
师:数一数,半圆中一共有多少个这样的小角?
生:10个。
[设计意图:量角器的本质是单位角的集合,让学生悟出用小角测量的可行性与操作要点,为学生理解量角的原理打下坚实的基础。比较用小角量角的优点与不足巧妙设疑,引导学生思考,改进工具。根据学生“把小角拼起来”的创意,及时演示拼成的半圆工具,其实这就是一个简易的量角器。凸显了量角器的本质——单位角的集合。学生经历了这一过程,量角的方法就不再教条了。量角就成了“用单位小角测量角的大小”,学生的思考就有了源头,学习就成了有意义的学习,而不是简单机械的记忆和重复。这种简易量角器的形成是学生探索量角工具过程中的一个关键步骤,以后只需要把这种工具加以改良优化就变成了量角器。]
3.用半圆工具度量角,初步把握量角的方法。
师:会用它来量角吗?那我们就用它量几个角好吗?(课件出示:(1)量∠1(40度)、∠2(120度)的角),
生:∠1里有(4 )个小角,∠2里有( 12)个小角。
师:说一说是怎么量的。
生:半圆工具中间的点要和度量的角的顶点对齐,半圆的直边要和角的一边重合,然后数度量的角里面有几个这样的小角。
师:所有小角的顶点集中到中间的一点,找准它是量角的关键。我们再来量一下这个角吧。
(课件出示:量∠3(22度)的角)
生:∠3里有两个小角多一点,
师:生活中经常需要知道多出来的角究竟有多少个同样大小的小小角,看来我们创造的工具还需要改进,你有办法改进吗?
生:把每个小角再平均分成几个更小的角。
[设计意图:学生用“简易量角器”测量了三个角的大小。“简易量角器”与“成品量角器”相比具有线条稀便于数、无刻度只能数、无缺省可以数的三个特点,正因为有此三个特点,所以用“简易量角器"学习量角就有了非常大的优势,一是方法容易学会,二是能够突出“量角器"和“量角方法”的本质,三是有效地化解了难点。同时生成问题,产生进一步探究的需求。]