《运算定律》教学反思【经典5篇】
《运算定律》教学反思 篇一
在教学《运算定律》的过程中,我发现学生们对于数学定律的理解有时候存在一些误区,导致他们在解题时出现错误。经过反思和总结,我认为在教学中应该注重以下几点:
首先,我发现学生们在学习数学定律时缺乏实际应用的训练。他们往往只是死记硬背定律的表达式,而不知道这些定律在实际问题中的运用方法。因此,我决定在教学中增加一些案例分析和实际问题的训练,让学生们更好地理解定律的实际意义。
其次,我发现学生们在解题时缺乏逻辑思维能力。他们往往只是机械地套用定律公式,而没有深入思考问题的本质和解题的思路。因此,我决定在教学中增加一些逻辑思维训练的环节,引导学生们学会分析问题、归纳规律,培养他们的数学思维能力。
最后,我发现学生们在学习数学定律时缺乏与同学互动的机会。他们往往只是一个人在解题,而不愿意与同学讨论交流,导致他们的学习效果受到一定的影响。因此,我决定在教学中增加一些小组合作学习的环节,让学生们有机会与同学一起讨论问题、交流思路,共同提高学习效果。
通过对《运算定律》教学的反思和总结,我相信在今后的教学中,我会更加注重培养学生的实际应用能力、逻辑思维能力和团队合作精神,帮助他们更好地掌握数学定律,提高数学成绩。
《运算定律》教学反思 篇二
在教学《运算定律》的过程中,我发现学生们对于数学定律的理解有时候存在一些困难,导致他们在解题时感到迷茫。经过反思和总结,我认为在教学中应该注重以下几点:
首先,我发现学生们在学习数学定律时缺乏自主学习的意识。他们往往只是被动地接受老师的讲解,而不愿意主动去思考和探索。因此,我决定在教学中引导学生们建立自主学习的意识,培养他们主动思考和解决问题的能力,让他们不再对数学定律感到困惑。
其次,我发现学生们在解题时缺乏耐心和细心。他们往往只是匆匆忙忙地做题,而没有仔细审题和思考问题的步骤。因此,我决定在教学中注重培养学生的耐心和细心,教导他们要认真审题、仔细分析,避免因为粗心大意而导致错误。
最后,我发现学生们在学习数学定律时缺乏实践操作的机会。他们往往只是停留在书本知识的层面,而没有进行具体的练习和实践。因此,我决定在教学中增加一些实践操作的环节,让学生们有机会亲自动手做题,巩固所学知识,提高解题的能力。
通过对《运算定律》教学的反思和总结,我相信在今后的教学中,我会更加注重培养学生的自主学习意识、耐心细心和实践操作能力,帮助他们更好地理解数学定律,提高数学学习的效果。
《运算定律》教学反思 篇三
本节课是新教材四年级第一学期的教学内容,研讨目的是12月份的“新基础”现场活动的前期随堂课的性质,虽说是随堂课的性质,但是上课前的准备工作不亚与平时的研讨课,因为本次听课的对象是华师大的吴亚萍教授。之前我好几次也洗耳恭听过她的几次评课,对我的启发和帮助是非常大的,因此对“新基础”有了个大概的了解。
这次她能听我的随堂课,是一次很好的学习机会。正如学校领导所说的那样是对我的课堂教学的把脉与诊断。在《运算定律》这节课备课前拜读了吴教授的《小学数学新视野》,也试图想把新基础的教育理念能体现在这节课中,但是从课堂执行情况看,教学理念的更新不是搬家这样的概念,学习新基础理论也不是一种即兴状态,要想把新基础理念运用到实践上还要*平时的“练功”,那是一种主动的教学意识的转变。就目前每个教师已经形成的课堂习惯而言,这样的转变在起始阶段是艰难的。听了吴教授的评课我也了了解自己的上课状态。
一、对“从容”的重新认识
对“从容”一词的理解无非停留与遇到紧急的事情冷静、镇定不慌不忙。如果用在教学上,最多是在上课时遇到紧急的情况下也能泰然处之的一种状态。这样的状态要在刚踏上工作岗位时却是需要这样的“从容”,生怕慌乱情急之中乱了教学次序,然而已有近十年工作时间的我“从容”已不再是一向首要的教学指标了,把“拿什么来从容”应该是我的教学追求的目标。对这一词的理解已经不能停留在教师身体的层面,更应拓展到师生身心合一后的一种从容,是教师能处理各种教学意外后的一种从容,从容的背后反映了教师的综合素质的能力。
二、对“激情”的再次认可
“激情”原本在我眼里那应该是语文老师的上课状态,因为那是课文的需要,情感培养的需要,而在数学课上如果把“激情”放在首位的话,有些喧宾夺主的味道,所以几年来课堂教学中这样的做作情绪本人一直处于不屑一顾的鄙视,长期下来在造成上课“平”的现象。在听了吴教授的评点之后,我非常赞同她提出的关键时刻释放“激情”,能调动学生强烈的求知欲望。如这节课中,引导学生对规律的验证时,应对突出一些重点的关键词,能帮助学生对规律的验证有一定的指向。只有教师本身积极的投入到教学中,那么学生才有可能对你有一个“热情”的回应,这种回应主要体现的学生的思想意识上的回应。
三、对“数学素养内涵”的拓展认识
在《小学数学教师》第10期《教师应追回失落的'数学素养》一文中谈到了有关数学教师的素养问题,这次吴教授也在评点中谈到了这个问题,看来面对当前的课程改革教师的数学素养是一个非常关注的问题。数学教师应当具有广泛的知识背景,不仅要明了小学数学知识的背景、地位与作用,精通小学数学的基础理论知识,熟悉小学数学内部的系统结构。其中包含四个方面:
1、培养学生学习数学兴趣能力,以此激发学生的学习数学积极性。
2、抓住课堂上动态生成的资源,作为活的教育资源,引发进一步的思考,这些亮点有助于学生数学学习的顿悟、灵感的萌发、瞬间的创造,促进学生对新知理解和掌握。
3、合理运用数学知识迁移,利用学生已有的数学知识水平,进行合理的数学知识迁移,从而为新知的形成成为可能,变繁琐为简单数学知识学习,变枯燥为有趣数学知识学习。
4、引导学生从数学角度去思考问题。义务教育阶段的数学教育给学生带的绝不仅仅是会解更多的数学题,而是非数学问题时,能够从数学的角度去思考问题,能够发现其中所存在的数学现象并运用数学的知识与方法去解决问题。这是目前作为教师的我只注重提高数学教学质量时缺少思考的方面,数学学科质量不能仅仅停留于学生“做”的过程,忽视了自身“思与行”的反思。
四、重新认识“数学学科育人价值”
数学学科的育人价值在我眼中无非是培养严谨科学的学习态度,养成良好的思维品质就可以了。听了吴教授对数学学科育人价值的阐述后,我觉得“人人都是教育者”这句话的真正理解。作为无论你是哪门学科的教师,都应该充分挖掘育人资源,因为这是每个教师共同的责任。
“新基础教育”数学教学的改革,从原来关注数学知识的层面向更深的层次开发。数学学科对于学生的发展价值,除了数学知识本身以外,至少还可以提供学生特有的运算符号和逻辑系统,使学生具有数学的语言系统;可以提供学生认识事物数量、数形关系及转换的不同路径和独特的视角,使学生具有数学的眼光;可以提供学生发现事物数量、数形关系及转换的方法和思维的策略,使学生具有数学的头脑;可以提供学生一种惟有在数学学科的学习中才有可能经历和体验并建立起来的独特的思维方式。
“教书”是为了“育人”,“育人”就需要育人的资源,这样的资源来自:
1、以数学知识的内在结构作为育人资源
2、以数学知识创生和发展的过程作为育人资源
3、以数学发明的人和历史作为育人资源
4、以学生的学习基础和生活经验作为育人资源
5、以开放的问题设计提升数学教学的育人质量。
一堂短短的35分钟的课,在专家眼里可以发现许多问题,看来作为教师不应该停下学习的脚步,时代的需求远远超过你想象的速度。学习的态度也不能忙于求成,只注重形式而忽视对内容的本质的理解。
《运算定律》教学反思 篇四
计算能力是学生在小学阶段必须掌握的一项很重要的基本技能,也是学生后续学习的基础。计算教学不仅要使小学生能够正确的进行四则运算,还要求小学生能够根据数据的特点,恰当地运用运算定律和运算性质,选择合理的灵活的计算方法和计算过程使计算简便。在这样的计算过程中,既要培养小学生的观察能力,注意力和记忆力,也要注意发展小学生思维的灵敏性和灵活性。同时计算也有利于培养小学生的学习专心,严格细致的学习态度,善于独立思考的学习能力,计算仔细,书写工整和自觉检查的学习习惯。计算教学直接关系着小学生对数学基础知识与基本技能的掌握,关系着小学生观察,记忆,注意,思维等能力的发展,关系着小学生的学习习惯,情感,意志等非智力因素的培养。因此,小学阶段的计算教学就显得异常重要。然而,在平时的教学中老师们往往就感到很困惑,觉得非常简单的知识小学生学起来却感到很困难,总是没能达到老师自己想要的效果。
出现这种原因我觉得主要存在以下几个问题:
(一)小学生对所学运算定律概念模糊不清
小学生的计算离不开数学概念,运算定律、运算性质、运算法则和计算公式等内容,而掌握概念是学好数学的基础。
1、乘法分配律与结合律易混淆
为了计算简便,解题中要训练学生合理运用运算定律,灵活解题。而在运算定律中,乘法分配律与乘法结合律非常相似,所以导致学生很容易混淆。如:25×7×4时,小学生总是把它当成分配律来计算,变成25×7+25×4或者25×7×25×4,不能理解概念。结合律的概念是,先把前两个数相乘,或者先把后两个数相乘,积不变。对概念理解不到位,导致在做题目时,老是出现错误。尤其乘法分配律是一个特别难理解的一个定律,比较抽象,而对于四年级的小学生来说,他们正处于具体形象思维向抽象逻辑思维的一个过渡时期,因此他们对概念的理解有点困难,总是会忘了后一个数也要和那个数相乘。如:(125+8)×4,他们总是会变成125×4+8。并且特别容易把它与乘法结合律混淆,所以导致教学比较的难。
2、运算中添括号与去括号时,运算符号的改变与不改变分辨不清
如讲括号的作用时,难点是添括号、去括号时括号里边运算符号的变化规律。如:15-4-2=15-(4+2)与20÷4÷5=20÷(4+5),但是很多学生觉得因15+4+2=15+(4+2),所以应该15-4-2=15-(4+2),因为20×4×5=20×(4×5),所以应该20÷4÷5=20÷(4÷5)。这就需要让小学生在充分的计算实践的基础上,自己归纳应该怎样变化,并且知道为什么?因为定律是建立在法则的基础上的。加不加括号,用不用运算定律,最后的计算结果是一样的。这条原则是不变的。只有小学生在熟练应用运算定律、括号后,积累了大量计算经验(如:4×25=100)的基础上再教简算才会显的自然、简单。简算是有效利用运算定律,括号使计算变的简单的一种计算技能,有时可直接口算,而不会改变计算结果,运用简算可提高计算速度。简算不单是在做简算题时才用,是可以随时使用的,这一点也应让小学生清楚。
3、运用乘法分配律逆运算易出错
为了计算简便,要灵活运用定律,而乘法分配律的逆运算却是一个难点,小学生难以理解。如计算3.4×0.125+4×0.125,本来小学生一眼就能看出运用乘法分配律可以得出,可是小学生很容易出现错误,(3.4+4.6)×0.125×0.125或者是直接计算,不会灵活运用乘法分配律的逆运算。但是有些学生学得比较快,所以在教学时,教师可以出一些不同等级的题目,可进一步深化,挖掘学生的潜能,可以让学得快的同学拓展思维依次出示:1.25×0.34+4.6+0.125和3.4÷8+4.6×0.125这样,就不会让学得快的学生觉得无聊。还有在教学中要尽量减少学
生计算的错误,提高计算的正确率,应根据学生的实际情况,因材施教,因人施教,采取相应的对策,才能提高学生计算的能力。
(二)前后知识的相互干扰对小学生的影响
小学生都认为:我知道按顺序做是比较方便的,但这样就没有运用运算定律,就不是简便计算!也有的小学生:“我根本没仔细看过题目,因为是简便计算嘛,所以拿上来就运用运算定律。”这种错误是由于小学生不正确的简便意识所造成的,他们认为:简便计算一定要运用运算定律,否则就不是简便计算!
由于不看题,本来直接算括号时,算式会更加的简便,但是有些小学生却认为要用运算定律,式子才会简便。因此利用乘法的分配率,虽然最终答案是正确的,但是导致算式多走了弯路,反而不简便了。
(三)题目本身的数字特征对小学生的干扰
我们在学习简便计算的一个很明显的标志就是“凑整思想”。“凑整”就是利用运算定律凑成整十整百,从而达到使计算简便的效果。但“凑整”必须建立在正确并熟练运用运算定律的基础上,不能盲目地追求“凑整”,一看到可以合成起来凑成整十整百的,就不顾算式的特性,强制性的“凑整”,变成了为“凑整”而“凑整”,造成知识学习的机械性。有些题,由于受数字的干扰,小学生容易出现违背运算法则的思想错误,盲目追求“凑整”。
(四)小学生灵活运用运算定律的能力欠缺
在教学的过程中,运算定律教学这一部分,教材在编排上安排的课时较短,内容既少又简单,题也典型,教材只是告诉你教什么内容,并提供范例,发挥都在于教师,所以教师在教学时,要一步一步的来,一条一条的说明。所以,在上课时,检查教学效果发现小学生都掌握的不错,都会运用,可是一到他们自己课外去做时,就不会运用了,因为在前面他们学习了四则运算,从而形成了思维定势,一下子比较难改变过来,还停留在前面的学习当中,在上课时,由于老师一直在强调所以才会运用,而到了课后没有人跟他们说,就不知道怎么使用了。如:56×37+56×63,他们只会按照以前所学的从左到右的计算顺序去计算,不知道使用简便计算,灵活的运用到课堂中来。小学生很难转变所学的知识,所以导致在教学时比较困难。
《运算定律》教学反思 篇五
加法运算定律和乘法运算定律。加法运算定律包括加法交换律和加法结合律;乘法运算定律包括乘法交换律、乘法结合律和乘法分配律。
学生对于加法运算定律和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算,基本能够灵活运用。然而对于乘法结合律则运用不是很好,乘法分配律则更为糟糕。
细想有以下几个原因:
第一,学生现在只是能够初步认识,弄明白这三个乘法运算定律,还不明白这几个运算定律的作用和意义。
第二,学生不能正确的分析算式并正确的运用运算定律,尤其是乘法分配律,它是乘法和加法的运算定律,学生忽视运算符号,极易把乘法分配律和乘法结合律混淆。
第三,对于乘法分配律,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。
总之,学生并没有深刻体会到运算定律带来的方便,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。等待讲解了下节内容简便运算之后,我想学生会得到一个明确地感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。