初三数学知识点归纳总结(精简3篇)

初三数学知识点归纳总结 篇一

在初三的数学学习中,我们需要掌握一系列的数学知识点。这些知识点不仅是我们进一步学习数学的基础,也是我们解决实际问题的工具。下面,我将对初三数学知识点进行归纳总结。

首先,我们需要掌握初中数学的基本概念和运算规则。这包括整数、有理数、无理数、实数等的概念,以及加法、减法、乘法、除法等运算规则。在运算中,我们需要注意运算的顺序和运算法则,特别是乘法和除法的优先级。

其次,我们需要掌握代数的基本知识。代数是数学中非常重要的一个分支,它研究的是数与数之间的关系。在代数中,我们需要掌握代数式的表示方法和运算法则,包括整式、分式、方程和不等式等的概念和性质。同时,我们还需要掌握一些基本的代数运算技巧,如因式分解、配方法、解方程和解不等式等。

除了代数,几何也是初三数学中的重要内容。在几何中,我们需要掌握平面几何和立体几何的基本概念和性质。平面几何包括点、直线、线段、角等的概念和性质,立体几何包括三棱锥、四棱锥、三棱柱、四棱柱、圆锥、圆柱、球等的概念和性质。同时,我们还需要掌握一些几何推理方法,如等腰三角形的性质、相似三角形的性质、平行线的性质等。

此外,我们还需要学习初中数学中的一些重要定理和公式。这些定理和公式是解决数学问题的重要工具。例如,勾股定理、正弦定理、余弦定理等在解决几何问题中起到了重要的作用;平方差公式、二次根式化简公式等在代数运算中起到了重要的作用。

最后,我们需要进行数学思维的培养。数学思维是解决数学问题的关键,它包括观察问题、分析问题、抽象问题、推理问题等一系列思维活动。通过培养数学思维,我们能够更好地理解和应用数学知识。

综上所述,初三数学知识点的归纳总结包括基本概念和运算规则、代数的基本知识、几何的基本知识、重要定理和公式以及数学思维的培养。掌握这些知识点,将为我们今后的数学学习和实际问题的解决提供坚实的基础。

初三数学知识点归纳总结 篇二

初三是数学学习的重要阶段,学生们需要掌握一系列的数学知识点。在这篇文章中,我将对初三数学知识点进行归纳总结。

首先,我们需要掌握初中数学的基本概念和运算规则。整数、有理数、无理数、实数等的概念是数学学习的基础,加法、减法、乘法、除法等的运算规则是我们解决实际问题的重要工具。

其次,我们需要掌握代数的基本知识。代数是数学中非常重要的一个分支,它研究的是数与数之间的关系。在代数中,我们需要掌握代数式的表示方法和运算法则,如整式、分式、方程和不等式等的概念和性质。同时,我们还需要掌握一些基本的代数运算技巧,如因式分解、配方法、解方程和解不等式等。

除了代数,几何也是初三数学中的重要内容。我们需要掌握平面几何和立体几何的基本概念和性质。平面几何包括点、直线、线段、角等的概念和性质,立体几何包括三棱锥、四棱锥、三棱柱、四棱柱、圆锥、圆柱、球等的概念和性质。同时,我们还需要掌握一些几何推理方法,如等腰三角形的性质、相似三角形的性质、平行线的性质等。

此外,我们还需要学习初中数学中的一些重要定理和公式。这些定理和公式是解决数学问题的重要工具。例如,勾股定理、正弦定理、余弦定理等在解决几何问题中起到了重要的作用;平方差公式、二次根式化简公式等在代数运算中起到了重要的作用。

最后,我们需要培养数学思维。数学思维是解决数学问题的关键,它包括观察问题、分析问题、抽象问题、推理问题等一系列思维活动。通过培养数学思维,我们能够更好地理解和应用数学知识。

综上所述,初三数学知识点的归纳总结包括基本概念和运算规则、代数的基本知识、几何的基本知识、重要定理和公式以及数学思维的培养。掌握这些知识点,将为我们今后的数学学习和实际问题的解决提供坚实的基础。

初三数学知识点归纳总结 篇三

初三数学知识点归纳总结

  总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它在我们的学习、工作中起到呈上启下的作用,为此我们要做好回顾,写好总结。总结怎么写才不会流于形式呢?下面是小编精心整理的初三数学知识点归纳总结,仅供参考,大家一起来看看吧。

  一、相似三角形(7个考点)

  考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

  考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

  考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

  考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

  注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

  考点3:相似三角形的概念

  考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

  考点4:相似三角形的判定和性质及其应用

  考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

  考点5:三角形的重心

  考核要求:知道重心的定义并初步应用。

  考点6:向量的有关概念

  考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

  考核要求:掌握实数与向量相乘、向量的线性运算

  二、锐角三角比(2个考点)

  考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

  考点9:解直角三角形及其应用

  考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

  三、二次函数(4个考点)

  考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

  考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。

  考点11:用待定系数法求二次函数的解析式

  考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。

  注意求函数解析式的步骤:一设、二代、三列、四还原。

  考点12:画二次函数的图像

  考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像。

  考点13:二次函数的图像及其基本性质

  考核要求:(1)借助图像的直观、认识和掌握一次函数的.性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

  注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式。

  四、圆的相关概念(6个考点)

  考点14:圆心角、弦、弦心距的概念

  考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

  考点15:圆心角、弧、弦、弦心距之间的关系

  考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

  考点16:垂径定理及其推论

  垂径定理及其推论是圆这一板块中最重要的知识点之一。

  考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

  直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

  考点18:正多边形的有关概念和基本性质

  考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

  考点19:画正三、四、六边形。

  考核要求:能用基本作图工具,正确作出正三、四、六边形。

  五、数据整理和概率统计(9个考点)

  考点20:确定事件和随机事件

  考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

  考点21:事件发生的可能性大小,事件的概率

  考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。注意:(1)在给可能性的大小排序前可先用"一定发生"、"很有可能发生"、"可能发生"、"不太可能发生"、"一定不会发生"等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

  考点22:等可能试验中事件的概率问题及概率计算

  本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画"树形图"方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

  在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画"树形图"方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

  考点23:数据整理与统计图表

  本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

  考点24:统计的含义

  本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

  考点25:平均数、加权平均数的概念和计算

  本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

  考点26:中位数、众数、方差、标准差的概念和计算

  考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

  注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序。

  考点27:频数、频率的意义,画频数分布直方图和频率分布直方图

  考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

  考点28:中位数、众数、方差、标准差、频数、频率的应用

  本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

相关文章

vivo管理培训总结感想【优秀4篇】

篇一:vivo管理培训总结感想4月1日公司组织了一次管理人员培训课程,使我不仅从理论上更深层次的学习了什么是管理,同时在思想上也受到了启发,从中更认识到作为管理人员,怎样站好自己的岗位,怎样协调好、培...
工作总结2018-03-03
vivo管理培训总结感想【优秀4篇】

公司销售工作总结(精简6篇)

总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,为此要我们写一份总结。你想知道总结怎么写吗?以下是...
工作总结2012-05-06
公司销售工作总结(精简6篇)

个人年度工作总结(最新6篇)

总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,我想我们需要写一份总结了吧。总结怎么写才能发挥它的作用呢?以下是小编整理...
工作总结2016-01-08
个人年度工作总结(最新6篇)

上半年工作总结(精简6篇)

总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,写总结有利于我们学习和工作能力的提高,让我们好好写一份总结吧。我们该怎么去写总结呢?以下是小编收集整理的上半年工作...
工作总结2018-08-03
上半年工作总结(精简6篇)

增员的工作总结(实用6篇)

增员的工作总结 第一篇一个月的时间总是那么短暂,稍纵即逝。转眼之间,又到月末。回顾本月的工作有值得褒奖的地方,但也存在很多不足之处。本月份宣传部主要围绕中国语言文学系的特色活动汉语言文化周开展系列宣传...
工作总结2019-06-08
增员的工作总结(实用6篇)

教学年终工作总结(精彩5篇)

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它是增长才干的一种好办法,因此我们需要回头归纳,写一份总结了。我们该怎么写总结呢?以下是小编收集整理的教学年终工作总结3篇,供大...
工作总结2013-08-02
教学年终工作总结(精彩5篇)