初中数学教案【精彩6篇】
初中数学教案 篇一
主题:解一元一次方程的教学设计
一、教学目标
1. 知识与技能:掌握解一元一次方程的基本方法,能够独立解决一元一次方程的问题。
2. 过程与方法:培养学生分析问题、推理和解决问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,增强他们的自信心。
二、教学重点与难点
1. 重点:掌握解一元一次方程的基本方法。
2. 难点:理解方程两边等值的概念,掌握解方程的逆运算。
三、教学过程
1. 导入:通过实际生活中的问题引入解一元一次方程的概念,激发学生的学习兴趣。
2. 讲解:介绍一元一次方程的定义、性质和解题方法,引导学生理解方程的意义。
3. 练习:设计一些简单的实例让学生进行练习,巩固基本解题方法。
4. 拓展:引导学生应用一元一次方程解决实际问题,培养他们的数学建模能力。
5. 总结:对本节课所学内容进行总结,强调解一元一次方程的重要性和应用价值。
四、教学资源
1. 教科书:提供相关教材内容和例题。
2. 多媒体设备:利用投影仪展示相关图片和视频,增强学生的学习兴趣。
3. 实物教具:使用具体物体模拟解方程的过程,帮助学生理解抽象概念。
五、教学评价
1. 课堂表现:通过课堂练习和讨论,评价学生的学习态度和解题能力。
2. 作业评定:布置相关作业,检验学生对一元一次方程的掌握程度。
3. 考试评测:设置一元一次方程的解题题目,考查学生在实际应用中的解题能力。
通过以上教学设计,可以使学生在轻松愉快的氛围中掌握一元一次方程的基本解题方法,提高他们的数学素养和解决问题的能力。
初中数学教案 篇二
主题:三角形的性质与应用教学设计
一、教学目标
1. 知识与技能:掌握三角形内角和为180度的性质,熟练运用三角形的性质解决相关问题。
2. 过程与方法:培养学生观察问题、分析问题和解决问题的能力。
3. 情感态度与价值观:培养学生对几何学的兴趣,增强他们的逻辑思维能力。
二、教学重点与难点
1. 重点:掌握三角形内角和为180度的性质,熟练运用该性质解决相关问题。
2. 难点:理解三角形性质的应用,灵活运用三角形的性质解决复杂问题。
三、教学过程
1. 导入:通过展示三角形的图片引入三角形的概念,激发学生的学习兴趣。
2. 讲解:介绍三角形的内角和为180度的性质,引导学生理解并掌握该性质。
3. 练习:设计一些简单的三角形题目,让学生进行练习,巩固三角形的性质。
4. 拓展:引导学生应用三角形性质解决实际问题,培养他们的数学建模能力。
5. 总结:对本节课所学内容进行总结,强调三角形性质的重要性和应用价值。
四、教学资源
1. 教科书:提供相关教材内容和例题。
2. 几何仪器:使用尺规作图工具展示三角形的性质,帮助学生理解几何概念。
3. 实物模型:利用实物模型展示三角形的性质,增强学生的感性认识。
五、教学评价
1. 课堂表现:通过课堂练习和讨论,评价学生的学习态度和解题能力。
2. 作业评定:布置相关作业,检验学生对三角形性质的掌握程度。
3. 考试评测:设置三角形性质的解题题目,考查学生在实际应用中的解题能力。
通过以上教学设计,可以使学生在实践中探索三角形的性质,加深对几何学的理解,提高他们的数学素养和解决问题的能力。
初中数学教案 篇三
一、内容特点
在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路
整体设计思路:
无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:
首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议
1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4.淡化二次根式的概念。
初中数学教案 篇四
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
初中数学教案 篇五
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。
二、重点、难点
1.教学重点:菱形的两个判定方法。
2.教学难点:判定方法的证明方法及运用。
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算。这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成。程度好一些的班级,可以选讲例3。
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1 菱形的四条边都相等;
性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形。转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1 对角线互相垂直的平行四边形是菱形。
注意此方法包括两个条件:
(1)是一个平行四边形;
(2)两条对角线互相垂直。
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2 四边都相等的四边形是菱形。
五、例习题分析
例1 (教材P109的例3)略
例2(补充)已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F。
求证:四边形AFCE是菱形。
证明:∵ 四边形ABCD是平行四边形,
∴ AE∥FC。
∴ ∠1=∠2。
又 ∠AOE=∠COF,AO=CO,
∴ △AOE≌△COF。
∴ EO=FO。
∴ 四边形AFCE是平行四边形。
又 EF⊥AC,
∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形)。
※例3(选讲) 已知:如图,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F。
求证:四边形CEHF为菱形。
略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF。
所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形。
六、随堂练习
1.填空:
(1)对角线互相平分的四边形是 ;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线 的四边形是菱形。
2.画一个菱形,使它的两条对角线长分别为6cm、8cm。
3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
七、课后练习
1.下列条件中,能判定四边形是菱形的是 ( )。
(A)两条对角线相等
(B)两条对角线互相垂直
(C)两条对角线相等且互相垂直
(D)两条对角线互相垂直平分
2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC。求证:四边形MEND是菱形.
3.做一做:
设计一个由菱形组成的花边图案,花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点,画出花边图形。
初中数学教案 篇六
[教学目标]
1、体会并了解反比例函数的图象的意义
2、能列表、描点、连线法画出反比例函数的图象
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质
[教学重点和难点]
本节教学的重点是反比例函数的图象及图象的性质
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点
[教学过程]
1、情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?
2、探索活动
探索活动1反比例函数y?
由于反比例函数y?
要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点?
连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。
探索活动2反比例函数y?2的图象.x2的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需x2的图象.x
可以引导学生采用多种方式进行自主探索活动:
2的图象的方式与步骤进行自主探索其图象;x
222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象.xxx
22探索活动3反比例函数y??与y?的图象有什么共同特征?xx(1)可以用画反比例函数y?
引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征。(即双曲线)反比例函数y?
k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x