《比和比例》网络助学教案【通用3篇】

《比和比例》网络助学教案 篇一

比和比例是数学中非常重要的概念,在我们的日常生活中也经常会涉及到。比和比例的理解对于学生的数学学习至关重要,因此我们需要通过网络助学教案来帮助学生更好地掌握这些知识。

首先,我们需要明确比和比例的概念。比是指两个量的大小关系,可以用“:”或者“/”表示,比如1:2或者1/2。而比例则是指两个相同性质的比之间的等比关系,比如1:2和2:4就是成比例的。通过比和比例,我们可以更好地理解数量之间的大小关系。

其次,我们需要学习如何进行比和比例的计算。在计算比的时候,我们需要将两个量进行比较,找到它们之间的关系。而在计算比例的时候,我们需要确保两个比例之间的关系是相等的,这样才能称之为成比例。通过练习不同的计算题目,可以帮助学生更好地掌握这些计算方法。

最后,我们需要学习如何应用比和比例。在日常生活中,我们经常会遇到各种比例的问题,比如食谱中的配料比例、地图上的比例尺等等。通过学习比和比例,我们可以更好地理解这些问题,解决实际生活中的实际问题。

通过网络助学教案,我们可以通过视频、练习题、在线讨论等方式来帮助学生更好地学习比和比例的知识。通过网络助学教案,学生可以在任何时间、任何地点进行学习,提高学习的灵活性和效率。希望学生能够通过网络助学教案,更好地掌握比和比例的知识,提高数学学习的效果。

《比和比例》网络助学教案 篇二

在学习数学的过程中,比和比例是非常重要的概念。比和比例的掌握不仅可以帮助我们更好地理解数学知识,还可以帮助我们解决实际生活中的问题。因此,我们需要通过网络助学教案来帮助学生更好地学习比和比例的知识。

首先,我们需要通过网络助学教案来介绍比和比例的基本概念。比是指两个数量之间的大小关系,而比例则是指两个相同性质的比之间的等比关系。通过网络助学教案,学生可以通过视频、图文等多种形式来学习这些基本概念,更好地掌握比和比例的含义。

其次,我们需要通过网络助学教案来进行比和比例的计算练习。比和比例的计算是数学学习中的重要内容,通过大量的练习题目,可以帮助学生更好地掌握这些计算方法。网络助学教案可以提供大量的练习题目,并且可以实时检查学生的答题情况,及时给予反馈。

最后,我们需要通过网络助学教案来应用比和比例的知识。比和比例在日常生活中有着广泛的应用,比如食谱中的配料比例、地图上的比例尺等等。通过网络助学教案,学生可以学习到这些实际应用,更好地理解比和比例在实际生活中的意义。

通过网络助学教案,我们可以帮助学生更好地学习比和比例的知识,提高数学学习的效果。希望学生能够通过网络助学教案,更好地掌握比和比例的知识,提高数学学习的兴趣和积极性。

《比和比例》网络助学教案 篇三

《比和比例》网络助学教案

《式与方程》网络助学教案 同学们,《式与方程》是小学阶段数学学习的一个重要内容,这部分知识与七年级上册《用字母表示数》和《一元一次方程》这两个单元的学习密切相关。相信通过今天的学习,同学们一定会有新的收获。 一、学习目标 1.进一步理解用字母表示数的作用和等式的性质,体会用字母表示数的简洁性,渗透初步的代数思想。在比较中进一步加深对方程、方程的解及解方程的区别、方程与等式的关系的理解。 2.进一步掌握“ax±b=c”、“ax×b=c”、“ax÷b=c”、“ax±bx=c”等形式的方程解法,培养自觉检验的良好习惯。 3.在分析问题、解决问题的活动中,发展数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。 二、知识梳理 首先,老师和同学们一起对这部分的知识点进行梳理和回顾。(边说边点击相关幻灯片) 1. 表示数量关系 如路程÷时间=速度 可以用s÷t=v表示 用字母 表示运算律 如乘法分配律 (a+b)×c=a×c+b×c 表示数 表示计算公式 如三角形面积公式 S=ah÷2 用字母表示数,既简洁明了,又能概括数量关系的一般规律,为研究和解决问题带来了很多方便。 2. 含有未知数 解方程 (是一个过程)。 等式───────→方程 方程的解 (是一个值)。 式子 不等式 3.方程与等式的关系:方程一定是等式,但等式不一定是方程。它们之间的关系可用这样的图来表示: 等式 方程 4.利用等式的性质可以解方程,我们学了这样两个等式的性质: (1)等式的两边同时加上或减去同一个数,所得结果仍然是等式。 (2)等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。 5.学会了用字母表示数,我们可以把所求的问题直接用一个字母来表示,然后根据题目中的数量关系列成一个含有未知数的等式。 用就可以得到答案了。这是解答应用题的一个重要方法——列方程解应用题。列方程解应用题,可以使一些逆思考的应用题化难为易。列方程解决实际问题的一般步骤是: (1)弄清题意,设未知数X。(如果题中有两个以上未知数,设其中一个为X。) (2)根据题中的数量关系列出方程。 (3)解方程。 (4)检验,写答语。 其中,找出数量间相等关系是正确列方程解应用题的重要环节。 三、作业精讲精评 好,结合刚才的复习,我们就新初一暑期同步作业中的有关习题进行学习和讲解。 例1、在(1)8x=96(2)1.7-x(3)a+b=23(4)y+5<11.3(5)0.25+m=0.5(6)5.4-2.8=2.6 (7)z+0.2>0.52 中,___是等式,___是方程。(填序号) 分析与解:判断一个式子是否方程,要符合两个条件,一是这个式子是等式,二是含有未知数。 思考:为什么1.7-x 、y+5<11.3、5.4-2.8=2.6、 z+0.2>0.52不是等式呢? 例2、一个两位数,十位数字是5,个位数字是m,表示这个两位数的式子是( )。 A、5+m B、5×10+m C、5m D、10m+5 很多同学看到这道题会毫不犹豫地选择A,对吗? 分析与解:十位数字是5,表示的是50,再加上个位数字m,所以表示这个两位数的式子是5

×10+m。(填序号) 例3、在 中,x是自然数,当x__时,分数值大于1;当x_时,分数值等于1;当x__时,分数值小于1。 分析与解:分数值大于1时,分子要比分母大,所以这里X只能小于3;当分数值等于1时,分子和分母相等,这里的X应等于3;分数值小于1时,分子应大于分母,这里的X应大于3。(填空) 例4、某市规定:乘坐出租车起步价为6元(3千米以内),超过3千米以外每1千米按2.5元计费(不足1千米按1千米收费)。小明的妈妈乘坐出租车行了m千米。 (1)用式子表示小明的妈妈应付的钱数。 (2)当m=11时,求小明的妈妈应付多少钱。 (1)2.5(m-3)+6 请同学们自己先试着做一做。 对,(m-3)表示比3千米多的千米数,2.5(m-3)表示超过3千米应付的钱数,再加上6就可以得到小明妈妈应付的钱数了。 (2)当m=11时 2.5(m-3)+6=2.5×(11-3)+6=26 答:当m=11时,小明的妈妈应付26元钱。 当把数字带入含有字母的式子进行计算式,注意结果不需要些单位名称。 (分步出示答案) 刚才我们知道,找等量关系是列方程解应用题的关键,我们可以抓住关键句、利用常用的公式、根据常见的数量关系来找等量关系。下面,就来看几道题。 例5、一个三角形的面积30平方米,已知高是7.5分米,三角形的底是多少分米? 分析与解:根据三角形的面积公式,可以写出等量关系:底×高÷2=三角形的面积,列方程为(出示解题过程)。 例6、兴趣小组男生人数是女生的3倍,后来走了18个男生,这时男、女生人数同样多。原来男女生各有多少人? 分析与解:我们可以看出,原来男生人数是女生的3倍,后来走了18个男生,这时男、女生人数同样多。这句话告诉我们,男生比女生多18人。我们用“男生人数-女生人数=18(出示解题过程)。 四、知识拓展 例7、六年级46名同学去划船,租大船、小船共10条,大船每条可坐6人,小船每条可坐4人,每条船都刚好坐满。他们租了几条大船和几条小船?(提示:设租了x条大船,那么租了(10-x)条小船。) 在六年级上册,我们已经学会了用假设法解决这道题,请你用假设的方法做一做。 根据提示,你会用方程解决这道题吗? 我们设租了x条大船,那么租了(10-x)条小船。大船坐了6x人,小船坐了4(10-x)人。 用“大船的人数+小船的人数=46” (出示解题过程)。 比较一下,算术和方程哪种解题思路更简单? 例8、同学们去栽树,如果每人栽3棵,还剩3棵;如果每人栽4棵,还差2棵。一共有多少名同学?一共有多少棵树?(提示:设一共有x名同学,树的总棵数是3x+3或4x-2) 这道题在奥数中我们叫盈亏问题,用算术方法做思路比较复杂,我们可以用方程的方法化难为易。 分析与解:在这道题中,人数和树总棵树是不变的。根据提示,设一共有x名同学,每人栽3棵,还剩3棵,树的总棵数是3x+3;如果每人栽4棵,还差2棵,树的总棵数是4x-2,因为树的总棵树不变,可以列出方程3x+3=4x-2(出示解题过程)。 《比和比例》网络助学教案 同学们,这节课我们共同来复习《比和比例》。这一部分我们学习了哪些知识呢?请大家和我一起做个回顾和整理。 一、学习目标 1.进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。 2.运用比较的方法,加深对所学知识的理解。 3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。 4.进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。 5.通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。 6.进一步体会比和比例知识的'应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,感受正、反比例是描述数量关系及其变化规律的又一种有效的数学模型。 二、知识梳理 1. 比与除法、分数的关系 意义 按比例分配 求比值──→求未知数 比 比和比例 比例尺 (比例尺意义,它是一个比) 性质──→化简化──→求未知数 意义 意义 比例 正、反比例 性质──→解比例 应用 2.这部分内容,有许多概念是既有联系又有区别的,我们一起看一看 (1)比和比例的意义与性质: 比 比例 意义 两个数的比表示两个数相除。 表示两个比相等的式子叫做比例。 基本 性质 比的前项和后项都乘或除以相同的数(0除外),比值不变。 在比例里,两个外项的积等于两个内项的积。 比的意义是什么呢?表示两个比相等的式子叫比例。你能说出比和比例的基本性质吗? (里面内容一个一个点击出现) (2)比、分数与除法的关系: a:b= = a÷b (b≠0) 这个式子表示了比、分数与除法的关系,比表示的是两个数相除,分数是一种数,而除法是一种运算。因此,它们之间是有区别的。 (3)求比值和化简比的联系与区别: 意义 方法 结果 求比值 比的前项除以比的后项所得的商叫做比值。 前项除以后项 一个数(整数、小数、分数) 化简比 把两个数的比化成最简单的整数比 前项和后项都乘或除以相同的数(0除外) 一个比 出示意义、方法、结果空白的,师:请同学们自己说一说?(里面内容一个一个点击出现) (4)正比例和反比例的区别与联系: 相同点 不同点 特征 关系式 正比例 两种相关联的量 两种量中相对应的两个数的比的比值(也就是商)一定 = k(一定) 反比例 两种量中相对应的两个数的积一定 x×y= k(一定) (里面内容一个一个点击出现) 三、作业精讲精评 例1、因为 = ,所以a∶b=( )∶( ),a和b成( )比例。 分析与解: 可以看成 a, a= ,a∶b= ∶ 化简后得a∶b=14∶5。a和b的比值一定,所以,a和b成正比例。(分步点击出示分析与解后,在例1中填上得数。) 及时反馈: 在5x-2y= 中(x和y均不为0),y和x是( )。 A、成正比例 B、成反

相关文章

五年级语文猴王出世

五年级语文猴王出世1五年级语文猴王出世,是新人教版五年级语文教案,本教案由Word软件制作,文件大小为 8K,创作者将在文件内注明,已被网友下载次,受欢迎程度为级。五年级语文猴王出世2《猴王出世》是一...
教案大全2012-02-03
五年级语文猴王出世

《两只老虎》小班音乐教案(优质3篇)

活动目标: 1. 愿意在教师的示范和鼓励下大胆地用肢体动作来表达歌曲。 2. 尝试创编歌曲。 3. 在学会歌曲的基础上初步掌握两只老虎的玩法,学习按游戏和音乐的要求,相应的按节奏变换动作。 4. 喜欢...
教案大全2014-08-08
《两只老虎》小班音乐教案(优质3篇)

奥尔夫音乐活动优秀教案及反思(实用3篇)

目标: 1、 了解杜鹃花与玫瑰花的颜色及形状。 2、 通过肢体游戏感应歌曲中的快板、慢板。 3、 在创编花的造型中感受春天的美。 活动准备: 挂图P3、各色杜鹃与玫瑰幻灯片、塑料花、风车花、呼啦圈、C...
教案大全2019-02-01
奥尔夫音乐活动优秀教案及反思(实用3篇)

歌曲《过新年》 教案 作者:张建华(精彩3篇)

教案 作者:张建华 TITLE=歌曲《过新年》 教案 教学内容: 歌曲《过新年》 教学目标: 通过演唱《过新年》,感受音乐所表达的新年的热烈...
教案大全2012-04-06
歌曲《过新年》   教案     作者:张建华(精彩3篇)

开学第一课安全教育教案(经典6篇)

新学期开学以来,为提全体学生的安全意识和自护自救能力,预防和杜绝各类事故的发生,我积极采取有效措施,认真上好新学期第一堂安全课,生命是宝贵的,面对生命我们要珍惜、敬畏。...
教案大全2017-01-05
开学第一课安全教育教案(经典6篇)

生日快乐(实用6篇)

生日快乐1活动目标:1、认识各种颜色的匣子,对匣子中的秘密有探究愿望。2、通过观察演示讲述故事,感知故事中礼盒的色彩和大小,能正确地讲述故事中重复的语句。3、体验过生日得到生日礼盒的神秘感和快乐的情趣...
教案大全2016-02-02
生日快乐(实用6篇)