初中数学第二册不等式基本性质教案【最新3篇】

初中数学第二册不等式基本性质教案 篇一

在初中数学的学习过程中,不等式是一个重要的概念,也是一个相对抽象但又非常实用的数学工具。在第二册的数学教材中,不等式的基本性质是学生们需要掌握的内容之一。通过本文的教案,我们将一起来探讨不等式的基本性质,并介绍一些学习方法和习题训练,帮助学生更好地理解和掌握这一知识点。

一、不等式的定义和符号表示

首先,我们需要明确不等式的概念。不等式是数之间的大小关系,用不等号表示。在初中数学中,我们通常会遇到大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)这四种不等式符号。学生需要能够准确理解这些符号的含义,并能够正确运用它们。

二、不等式的基本性质

1. 加减性质:若 a>b,则 a+c>b+c,a-c>b-c(c为正数)

2. 乘除性质:若 a>b 且 c>0,则 ac>bc,a/c>b/c(c为正数)

3. 倒数性质:若 a>b 且 c<0,则 ac

4. 反号性质:若 a>b,则 -a<-b

通过以上基本性质,我们可以推导出更复杂的不等式,帮助学生更好地解题。在教学中,可以通过实例演示和练习题训练,让学生熟练掌握这些性质,并能够灵活运用到实际问题中。

三、教学方法和习题训练

1. 教师可以通过生活中的例子引入不等式的概念,让学生更容易理解。

2. 给学生一些简单的实际问题,让他们通过列不等式来解决,提高实际运用能力。

3. 鼓励学生多做练习题,巩固所学知识。可以选择一些难度适中的习题,逐步提高学生的解题能力。

通过以上教学方法和习题训练,相信学生们能够更好地掌握不等式的基本性质,提高数学解题的能力和思维逻辑能力。在教学过程中,教师要注重引导学生思考和独立解题,培养他们的数学思维和解决问题的能力。希望学生们在学习不等式的过程中,能够更加自信和勇敢地面对挑战,取得更好的成绩。

初中数学第二册不等式基本性质教案 篇二

第二篇内容

在初中数学的课程中,不等式是一个重要的内容,也是学习数学的基础知识之一。在第二册的数学教材中,不等式的基本性质是学生们需要掌握的重点之一。通过本文的教案,我们将介绍不等式的基本性质,并提供一些学习方法和习题训练,帮助学生更好地理解和掌握这一知识点。

一、不等式的基本性质

1. 传递性:若 a>b 且 b>c,则 a>c

2. 对称性:若 a>b,则 b

3. 三角不等式:|a+b| ≤ |a|+|b|

4. 平均不等式:(a+b)/2 ≥ √ab

以上不等式的性质是学生们需要掌握的基本内容,通过这些性质的学习,可以帮助学生更好地理解和运用不等式,解决实际生活中的问题。

二、教学方法和习题训练

1. 教师可以通过实例演示和讲解,引导学生理解不等式的基本性质,帮助他们建立正确的数学思维。

2. 给学生一些实际问题,让他们通过列不等式来解决,提高解题能力和实际运用能力。

3. 鼓励学生多做练习题,巩固所学知识。可以选择一些综合性的习题,让学生综合运用所学性质解决问题。

通过以上教学方法和习题训练,相信学生们能够更好地掌握不等式的基本性质,提高数学解题的能力和思维逻辑能力。在教学过程中,教师要注重引导学生独立思考和解题,培养他们的解决问题的能力和创新能力。希望学生们在学习不等式的过程中,能够持之以恒,不断提高自己的数学水平,取得更好的成绩。

初中数学第二册不等式基本性质教案 篇三

初中数学第二册不等式基本性质教案

  教学目的

  掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

  教学过程

  师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

  第一组:1+2=3; a+b=b+a; S =ab; 4+x =7。

  第二组:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4。

  生:第一组都是等式,第二组都是不等式。

  师:那么,什么叫做等式?什么叫做不等式?

  生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

  师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

  前面我们学过了等式,同学们还记得等式的性质吗?

  生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

  师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,

结果将会如何呢?让我们先做一些试验练习。

  练习1 (回答)用小于号“<”或大于号“>”填空。

  (1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2; (4)- 4_____-6

  练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

  (1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

  (2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

  (3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

  生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

  师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

  生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

  师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

  练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

  7>4;-2<6;-3<-2;-4>-6。

  师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

  性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。

  (让同学回答。)

  性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)

  性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)

  现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

  不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

  生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

  师:对a和b有什么要求吗?对c有什么要求?

  生:没有什么要求。

  师:哪位同学来回答第二、三条性质?

  生甲:如果a0, 那么acb,且c>0,那么ac>bc(或

  生乙:如果a<b,且c<0, ac="">bc(或 );如果a>b,且c<0,那么ac<bc(或

  师:这两条性质中,对a、b、c有什么要求?

  生:对a、b没什么要求,特别要注意c是正数还是负数。

  师:很好,c可以为零吗?

  生:c不能为零。因为c为零时,任何不等式两边都乘以零就变成等式了。

  师:好!应用刚才学到的基本性质,我们来看下面的例题。

  [例1]按照下列条件,写出仍能成立的不等式:

  (1)5<9,两边都加上-3;

  (2)9>4,两边都减去10;

  (3)-5<3,两边都乘以4;

  (4)14>-8,两边都除以-2。

  解 (1)根据不等式基本性质1,在不等式59的两边都加上-3,不等号的方向不变,所以

  5+(-3)<9+(-3),

  2<6

  (2)根据不等式基本性质1,得

  9-10>4-10

  -1>-6

  (3)根据不等式基本性质2,得

  -5×4<3×4

  -20<12

  (4)根据不等式基本性质3,得

  14÷(-2)<(-8)÷(-2)

  -7<4

  [例2]设a>b,用不等号连结下列各题中的两式:

  (1)a-3与b-3;(2)2a与2b;(3)-a与-b。

  师:哪一位同学来做这题?解题时,要讲清一步的理由。

  生甲:因为a>b,两边都减去3,由不等式的基本性质1,得

  a-3>b-3.

  师:很好,大家都是这样做的吗?

  生乙:我是这样做的,因为a>b,两边都加上(-3),由基本性质1,得

  a-3>b-3.

  师:好!这两位同学从不同的角度来分析题目,都得到了正确的结论。

  生丙:因为a>b,2>0,由基本性质2,得2a>2b。

  生丁:因为a>b,-1>0,由基本性质3,得-a>-b。

  师:下面我们来看一组较复杂的问题,请大家都来开动脑筋,认真审题,仔细分析。[例3]判断以下各题的结论是否正确,并说明都理由:

  (1)如果a>b,且c>0,那么ac>bd;

  (2)如果a>b,那么ac2>bc2;

  (3)如果ac2>bc2,那么a>b;

  (4)如果a>b,那么a-b>0;

  (5)如果ax>b,且a≠0,那么x< ;

  (6)如果a+b>a;

  生甲:(1)不对,当c=d≤0时,ac>bd不成立。

  生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。

  生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。

  (4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。

  (5)不对,当a<0时,根据不等式基本性质3,得。

  (6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。

  师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。

  课外做以下作业:略。

  教案说明

  (1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。

  (2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的.影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。

  (3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

相关文章

下雨了教案(推荐6篇)

作为一位杰出的老师,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。那么问题来了,教案应该怎么写?以下是小编为大家收集的下雨了教案,仅供参考,希望能够帮助到大家。下雨了教案1本次活动设...
教案大全2012-07-01
下雨了教案(推荐6篇)

小班六一儿童节的节目教案(通用6篇)

在教学工作者开展教学活动前,通常会被要求编写教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写呢?下面是小编帮大家整理的小班六一儿童节的节目教案(通用6篇),仅供参考,大家一起来看看吧。小班六一...
教案大全2013-03-08
小班六一儿童节的节目教案(通用6篇)

中学生文明礼仪主题班会教案【精简6篇】

在我们的学习时代,大家最不陌生的就是主题班会吧?主题班会能充分发挥集体的智慧和力量,让个人在集体活动中受教育、受熏陶,从而提高综合素质。那么问题来了,要如何准备一个主题班会呢?以下是小编收集整理的中学...
教案大全2016-04-07
中学生文明礼仪主题班会教案【精简6篇】

吸管分类大班数学活动教案(精选3篇)

【活动设计】 (一)活动材料的科学性与层次性 1、操作材料丰富、多功能性 分类材料选用生活中孩子经常使用的、熟悉的吸管,虽是普通的9根吸管,却涵盖了按颜色、粗细、长短、能否变形、有条纹与没条纹、尖头与...
教案大全2015-01-03
吸管分类大班数学活动教案(精选3篇)

杜甫诗《咏怀古迹》教案【优质3篇】

【原创】杜甫诗三首《咏怀古迹(其三)》教案作者:罗志辉人教版高一语文必修三 杜甫诗三首《咏怀古迹(其三)》教案 本教案发表在中学语文教学资源网 上传日期:[2009-02-22]审核发表:[20...
教案大全2013-06-07
杜甫诗《咏怀古迹》教案【优质3篇】

小袋鼠救灾体育游戏教案(精选3篇)

教师讲解:“刚才长颈鹿传来消息说,森林里的一些小动物已经好几天没有粮食吃了,发出了求救信号,我们小袋鼠去运粮食帮助他们好吗?”(好!)。教师示范。 将幼儿分成四组。教师发令后,每组幼儿鱼贯越过障碍(跨...
教案大全2013-07-04
小袋鼠救灾体育游戏教案(精选3篇)