等边三角形教学设计(实用3篇)
等边三角形教学设计 篇一
在教学等边三角形时,可以通过以下设计来帮助学生更好地理解和掌握知识点。
1.引入导入:可以通过展示等边三角形的图形和性质,引起学生的兴趣和好奇心。让学生观察图形,提出问题,引导他们思考等边三角形的特点。
2.概念讲解:在引入之后,可以对等边三角形的定义进行讲解,即三条边长度相等的三角形称为等边三角形。同时,可以让学生自己找出等边三角形的特点,如内角和为180度等。
3.性质探究:通过让学生自主探索等边三角形的性质,如等边三角形的三条边相等,内角和为180度,高相等等。可以设计一些实践活动或讨论题目,让学生在实践中感受等边三角形的性质。
4.例题讲解:在学生掌握了等边三角形的基本性质后,可以通过例题讲解的方式帮助学生巩固所学知识。可以设计一些简单到复杂的例题,让学生逐步提高解题能力。
5.综合练习:最后,可以设置一些综合性的练习题目,让学生进行巩固练习。可以让学生在小组或个人完成练习,然后互相交流讨论,提高学生的合作能力和解题思维。
通过以上设计,可以帮助学生在轻松愉快的氛围中学习等边三角形的知识,提高他们的学习兴趣和学习效果。
等边三角形教学设计 篇二
在教学等边三角形时,可以通过以下设计来激发学生的学习兴趣和提高他们的学习效果。
1.实物展示:可以准备一些实物模型或图片,展示给学生观看,让他们直观地感受等边三角形的形状和特点。可以让学生观察实物,观察其边长是否相等,内角是否相等等。
2.游戏互动:可以设计一些有趣的游戏或互动环节,让学生在游戏中学习等边三角形的知识。例如,可以设计一个等边三角形拼图游戏,让学生在拼图的过程中学习等边三角形的性质。
3.实践探究:可以设计一些实践活动,让学生在实践中探究等边三角形的性质。例如,可以让学生使用尺子和量角器测量等边三角形的边长和内角,通过实践来深入理解等边三角形的性质。
4.小组合作:可以让学生分成小组,进行合作学习。可以设计一些小组任务,让学生共同讨论解决问题,提高他们的团队合作能力和解决问题的能力。
5.趣味评价:最后可以设计一些趣味评价方式,如小组比赛、角色扮演等,让学生在趣味中检验自己的学习成果,激发他们的学习动力。
通过以上设计,可以帮助学生在轻松愉快的氛围中学习等边三角形的知识,提高他们的学习兴趣和学习效果,从而更好地掌握等边三角形的相关知识。
等边三角形教学设计 篇三
等边三角形教学设计
教学过程
一、复习等腰三角形的判定与性质
二、新授:
1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等
2.等边三角形的判定:
三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.
3.由学生解答课本148页的例子;
4.补充:已知如图所示, 在△abc中, bd是ac边上的中线, db⊥bc于b,
∠abc=120o, 求证: ab=2bc
分析 由已知条件可得∠abd=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是ab,30o角所对的边是与bc相等的线段,问题就得到解决了.
b
证明: 过a作ae∥bc交bd的延长线于e
∵db⊥bc(已知)
∴∠aed=90o (两直线平行内错角相等)
在△ade和△cdb中
∴△ade≌△cdb(aas)
∴ae=cb(全等三角形的对应边相等)
∵∠abc=120o,db⊥bc(已知)
∴∠abd=30o
在rt△abe中,∠abd=30o
∴ae= ab(在直角三角形中,如果一个锐角等于30o,
那么它所对的直角边等于斜边的一半)
∴bc= ab 即ab=2bc
点评 本题还可过c作ce∥ab
5、训练:如图所示,在等边△abc的边的延长线上取一点e,以ce为边作等边△cde,使它与△abc位于直线ae的同一侧,点m为线段ad的.中点,点n为线段be的中点,求证:△cnm是等边三角形.
分析 由已知易证明△adc≌△bec,得be=ad,∠ebc=∠dae,而m、n分别为be、ad的中点,于是有bn=am,要证明△cnm是等边三角形,只须证mc=cn,∠mcn=60o,所以要证△nbc≌△mac,由上述已推出的结论,根据边角边公里,可证得△nbc≌△mac
证明:∵等边△abc和等边△dce,
∴bc=ac,cd=ce,(等边三角形的边相等)
∠bca=∠dce=60o(等边三角形的每个角都是60)
∴∠bce=∠dca
∴△bce≌△acd(sas)
∴∠ebc=∠dac(全等三角形的对应角相等)
be=ad(全等三角形的对应边相等)
又∵bn= be,am= ad(中点定义)
∴bn=am
∴△nbc≌△mac(sas)
∴cm=cn(全等三角形的对应边相等)
∠acm=∠bcn(全等三角形的对应角相等)
∴∠mcn=∠acb=60o
∴△mcn为等边三角形(有一个角等于60o的等腰三角形是等边三角形)
解题小结
1.本题通过将分析法和综合法并用进行分析,得到了本题的证题思路,较复杂的几何问题经常用这种方法进行分析
2.本题反复利用等边三角形的性质,证得了两对三角形全等,从而证得△mcn是一个含60o角的等腰三角形,在较复杂的图形中,如何准确地找到所需要的全等三角形是证题的关键.
三、小结本节知识
四、作业:课本151页第13,14题