《梯形的面积》教学反思(优秀6篇)
《梯形的面积》教学反思 篇一
在教学《梯形的面积》这个知识点时,我发现了一些问题和反思。首先,我发现学生在理解梯形的面积计算公式时存在一定困难。梯形的面积计算公式为:$S=\frac{a+b}{2}h$,其中$a$和$b$分别为上底和下底的长度,$h$为梯形的高。我在教学中发现,学生往往容易混淆上底和下底的概念,导致计算出错。因此,在今后的教学中,我需要更加重点地强调上底和下底的区别,并提供更多的实例让学生进行练习,以加深他们对这一概念的理解。
其次,我还发现学生在应用梯形的面积计算公式时存在一定的困难。虽然学生可以正确地列出计算公式,但在实际问题中,他们往往无法准确地确定梯形的上底、下底和高的数值。这可能是因为学生对于问题的理解不够深入,或者在解题过程中存在着一定的思维定式。因此,在今后的教学中,我需要引导学生多做实际问题的练习,帮助他们建立起对梯形的面积计算方法的直观认识,提高他们的解题能力。
最后,我在教学中还发现学生对于梯形的面积计算公式缺乏兴趣。在课堂上,我尝试通过生动形象的实例来引入梯形的面积计算,但效果并不理想。学生往往对这一知识点表现出麻木和无聊的态度,导致学习效果不佳。因此,我需要在今后的教学中注重培养学生对数学的兴趣,让他们能够主动参与到学习过程中来,从而提高学习效果。
综上所述,通过对《梯形的面积》教学的反思,我发现了一些问题并提出了相应的解决措施。在今后的教学中,我将更加重视学生对梯形的面积计算方法的理解,引导他们多做实际问题的练习,同时注重培养学生对数学的兴趣,从而提高教学效果,帮助学生更好地掌握这一知识点。
《梯形的面积》教学反思 篇二
在教学《梯形的面积》这个知识点时,我深刻反思了自己的教学方法和策略。首先,我意识到在教学过程中,我应该更加注重激发学生的学习兴趣。梯形的面积计算虽然是一种基础的数学运算,但如果能够结合实际生活中的例子,让学生看到这一知识点的实际应用,就能够更好地引起他们的兴趣。因此,我在今后的教学中将更加注重引入生活中的实例,让学生能够更直观地理解梯形的面积计算方法。
其次,我还认识到在教学过程中,我应该更加注重梯形面积计算的思维训练。梯形的面积计算不仅仅是简单地套用公式,更重要的是培养学生的逻辑思维和问题解决能力。因此,我在今后的教学中将引导学生多做一些拓展性的问题,让他们能够更深入地理解梯形的面积计算方法,提高他们的解题能力。
最后,我还意识到在教学过程中,我应该更加注重梯形面积计算的实践操作。理论知识虽然重要,但只有通过实际操作,学生才能真正掌握这一知识点。因此,我在今后的教学中将更加注重实践操作,让学生亲自动手计算梯形的面积,从而更好地理解这一知识点。
通过对《梯形的面积》教学的反思,我意识到了自己在教学上的不足,并提出了相应的改进方案。在今后的教学中,我将更加注重激发学生的学习兴趣,注重梯形面积计算的思维训练,同时加强梯形面积计算的实践操作,以提高学生的学习效果,帮助他们更好地掌握这一知识点。
《梯形的面积》教学反思 篇三
一、教学内容:五年级上册第88页《梯形的面积》
二、教学目标:
1、知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。
2、过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。
3、情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。
三、教学重难点
教学重点:
探索并掌握梯形面积是本节课的重点
教学难点:
理解梯形面积计算公式的推导过程是本课的难点。
四、教学过程:
(一)、复习旧知
出示(点)展开想象引到(线段)又通过想象引到互相垂直的两条线段
同学们看这个图形,你会想到什么?(平面图形的底和高)想象这是什么图形的底和高,用工具在作业纸上将想象图形的另一部分补充完整,并在图下写出你所知图形的面积计算公式及字母表达式。
学生汇报时板书所学图形的图片及面积公式,回忆三角形和平行四边形的面积推导过程,引出转化的数学思想。在学生汇报梯形引出课题,并板书课题。
【设计意图:本环节由点开始学生就展开想象,在兴趣盎然的状态中打开了思维,轻松自然的引出各种已学平面图形的面积,渗透了转化的数学思想,即复习了旧知,又引出了新知,而且培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力。】
(二)、探究新知
联系已学图形面积计算公式,猜一猜梯形的面积计算公式可能是怎样的。基于平行四边形面积和三角形面积都与底和高有关,学生可以大胆猜测,然后探究验证。桌上的学具超市里放有直角梯形、一般梯形等若干个,有完全一样的,也有不一样的。然后分组探究。具体做法:
(1)自选学具。(每个小组发如下梯形图片和探究表各一份)
形状个数拼成的形状结论
……
(2)提出要求:
①做一做:利用手中的学具,选择你所需要的梯形,或拼、或剪…转化成一个以前我们所学的图形。
②想一想:可以转化成什么图形?所转化成的图形与原来梯形有什么联系?
③说一说:你发现了什么,并尝试推导梯形的面积计算公式。
(3)小组合作,操作、观察、交流、填表,教师参与讨论。
【设计意图:此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。凡是学生能想到、做到、说到的教师不限制、不替代、不暗示,为学生提供了一个充分发挥才智自己想办法解决问题的思维空间,在这里学生可以按照自己的想法任意剪拼一个梯形,摆拼两个梯形,使学生通过尝试——失败——成功的亲身体验,主动发现公式,注重了学生推理能力的培养,从而有效地突出本节的重点,突破本节的难点。】
(4)全班交流汇报。(教师根据学生的回答借助演示)
a、学生可能从以上梯形中选择两个完全相同的梯形,拼成一个平行四边形或者一个长方形。他们可能得出以下结论:两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底等于梯形上底和下底的和,高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半。学生还可能会有以下做法。
b、沿梯形的对角线剪开分成两个三角形
c、把一个梯形剪成一个平行四边形和一个三角形
d、沿等腰梯形的一个顶点做高,剪拼成一个长方形
e、沿梯形中位线的两端点分别向下做高,剪拼成一个长方形
f、从梯形的两腰中点的连线将梯形剪开拼成一个平行四边形。
……
对学生以上的做法教师给予充分的肯定和表扬。只要学生能把以上意思基本说出来,再通过小组之间的交流、互补,使结论更加完善。
(其中第一种方法重点解决,其他方法学生汇报几种算几种不做一一详解。)
(5)归纳公式。根据探究表的结论,让学生自己归纳出梯形面积的计算公式。
梯形的面积=(上底+下底)×高÷2
如果用字母S表示面积,用a和b表示梯形的上底和下底,用h表示高,那么上面的公式用字母表示:
S=(a+b)h÷2
【设计意图:对多种方法各抒己见,在交流的过程中互补知识缺陷,学生在猜想—操作—争辩—演示—叛变—互补的过程中深刻的理解梯形面积的推导,纠正学生的错误猜想,巩固正确的推导思路。】
(五)深化巩固
1、尝试计算
a、计算一个一般梯形的面积。
b、梯形面积计算帮我们完成很多伟大的壮举,介绍三峡水电站和南水北调工程。出示例题:
(1)我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。
(2)一条新挖的水渠,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面积是多少平方米?
借助模型和让学生了解横截面、渠底、渠高等词义。在两道题中任选一道解答。
【设计意图:运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。】
2、学生观察图形,解决以下问题:梯形的上底缩小到一点时,梯形转化成什么图形?这是面积公式怎么变化?当梯形的上底增大到与下底相等时,梯形转化成什么图形?这时面积公式怎么变化?当梯形的上底增大到与下底相等,并且两腰与下底垂直时,梯形就变成什么图形?面积公式怎么变化?从这几个公式的联系,可发现什么规律?
【设计意图:本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。】
3、总结,反思体验
回想这节课所学,说说自己有哪些得失?
【设计意图:这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。】
【教后反思】:
五年级下册88页《梯形的面积》是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。本课通过出示学具超市—小组合作探究—展示、交流—引导学生自己总结公式—应用梯形面积的计算公式解决实际问题—构建知识体系完成教学目标。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。由于学生已经经历了平行四边形和三角形的面积计算公式的推导过程,他们完全有能力利用的所学的方法进行梯形的面积计算公式的推导;因此,我大胆地让学生自己完成这一探索过程。对于个别学困生,我则通过参与他们的'讨论,引导他们自己去发现问题,解决问题。提供给学生几种不同形状的梯形去探究,目的是让学生经历从特殊到一般的归纳过程。有了操作和讨论作铺垫,公式的推导也就水到渠成了,所以,让他们自己归纳公式。在“操作、观察、分析、讨论、概括、归纳”这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。具体操作时,因我理念不到位,素质有待提高,有成功的地方,也有失败的环节。分析如下:
突出体现了两个亮点:
1、尊重学生的个性发展,允许学生在学具超市中任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。
2、设计了一系列的探究活动、让学生在想、说、拼、议、评、等过程中复习旧知,学习新知。这些都有利于拓宽学生的思维空间,提高学生的动手操作能力和知识迁移能力。在上课时也显示出几点缺陷,
(1)、学生汇报时我没有注意让学生对两个完全一样的梯形拼成了一个平行四边行作重点理解,因而在引导公式时学生理解有难度,我才又在投影下重合两个梯形,让学生体会梯形的上底与下底的和就是平行四边形的底。造成学生失败后再补救的局面。
(2)、公式的推导形式单一,造成这一现象源于学具准备不科学。或教师引导不到位。
(3)、学生用字母代数推导公式时,我不注意先设定图形的那一部分分别用哪个字母表示,而是直接让学生生硬的套用,显示出教师上课的随意性。以上种种说明我的教学理念还很滞后,有待于更新、学习。)
《梯形的面积》教学反思 篇四
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,明白要利用转化法将梯形转化成我们已经学过的图形来求面积。
在学习推导梯形面积计算公式之初,先让学生做两个一样的梯形;在做的过程中,学生便明白了梯形的特征:只有一组对边平行的四边形。然后让学生回忆已学过的平行四边形和三角形面积的推导过程,说说可以把梯形转化成已经学过的什么图形?并让学生在练习本上画一画。在这个环节上,有不少学生画出来了,但不知道要怎么推导。这也反映出了学生水平的差异性。在梯形面积的推导上,我让学生采用一个梯形和两个梯形来求。
用一个梯形来求时,学生大部分能将其分割成一个平行四边形和一个三角形;但在推导过程中由于有些知识他们没学导致推不到底。当分割成两个三角形时学生都能理解。用一个梯形来推导公式理解之后,我又让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?(这一部分主要是通过设计导学提纲来实行的)通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
学生公式是推导出来了,但由于我没敢完全放手,在有些环节上是我领着学生做的,(比如说用两个梯形拼图形,应该让学生自己思考用两个什么样的梯形,学生自己动手做一做;在三角形的基础上,学生自己得出是两个完全一样的梯形)所以在后面的练习中,还是有些孩子总是忘除以2。虽然问他梯形的面积公式时可以答的很好,但做题时就出现了情况。这还需要让学生多练,多动手操作,从真正意义上明白多边形的面积公式是怎么推导出来的。
《梯形的面积》教学反思 篇五
星期五,我们几位年轻老师有幸得到教育局高老师的指点,对我们的课堂教学进行指导。
我讲的是梯形的面积一节。第一部分是认识梯形,第二部分是梯形面积公式的推导过程得出公式,第三部分是面积公式的实际应。
这节课,高老师提出了非常深刻的问题。在刚开始由平行四边形引入梯形时,画成了等腰梯形,太具有特殊性,因此一下子跳到了后面的学习,这里应该画一个一般的梯形,体现一般性。其次是数学语言的描述不准确,“梯形的高和平行四边形的高一样”应该描述为“梯形的高与平行四边形的高相等”。还有是知识的缺漏,梯形的高有无数条没有向学生们讨论,另外在“用两个完全相同的梯形拼一个平行四边形”时,没有说好前提是“两个完全一样的梯形”,虽然在后面的练习中提到,但是学生的第一印象是非常重要的,这样就有点盲羊补牢,要重视学生的第一印象,此处学具也少,应该让学生再拿两个不相同的梯形进行拼凑,让学生充分体验“完全一样”。在学生上前展示的过程中,可以把梯形贴在黑板上,这样更容易观察。在这节课中我讲的内容很多,高老师提意量可少,但内容要精,要全面。对于数学的学习,高老师提到了数学思想“转化思想”,知识有变化,思想却不会变解决问题的方法却不会变,这一点是非常重要的。
关于青年教师的成长,高老师提出了很重要的一点就是“悟”。对于教学除了多看、多听、多学习,最重要的一点就是多思考、多反思,思考可以把别人的东西内化为自己的东西,也可以对某一件事恍然大悟。因此在教学中要多“悟”。
《梯形的面积》教学反思 篇六
作为一名高中数学教师来说 , 上好每一堂课,要对教材进行加工,还要对教学过程以及教学的结果进行反思。因为数学教育不仅仅关注学生的学习结果 , 更为关注结果是如何发生 , 发展的 、我认为可以从两方面来看:一是从教学目标来看 , 每节课都有一个最为重要的 , 关键的 , 处于核心地位的目标 、高中数学不少教学内容适合于开展研究性学习;二是从学习的角度来看 , 教学组织形式是教学设计关注的一个重要问题 、如果能充分挖掘支撑这一核心目标的背景知识 , 通过选择 , 利用这些背景知识组成指向本节课知识核心的 , 极富穿透力和启发性的学习材料 , 提炼出本节课的研究主题 , 就会达到理想的效果。这也需要自己不断提高业务能力和水平 、以下是我对本次课教学的一些反思 、。
一、对知识点教学的反思 —— 学会数学的思考
对于学生来说 , 学习数学的一个重要目的是要学会数学的思考 , 用数学的眼光去看世界 、而对于教师来说 , 他还要从 " 教 " 的角度去看数学 , 他不仅要能 " 做 ", 还应当能够教会别人去 " 做 ", 因此我觉得反思应当从逻辑的 , 历史的 , 关系的等方面去展开 、: 本节课内容较为单一,目标也比较明确,就是用“以直代曲,无限逼近”的思想求曲边梯形的面积。然而,这种思想方法给学生带来的理解上的难度却不小,因为要真正理解这种方法必须对极限的思想要有比较清晰的认识。不过,新课程似乎为了避免增加学生的负担,而不要求深入介绍极限的概念,其旨在用最易于让学生接受的手段,使学生获得最有价值的数学知识。这节课亦是如此。基于以上原因,备课时我认为本节课有两大难点:一是如何使学生获得“无限分割,以直代曲”的思路;二是对“极限”“无限逼近”的理解,即理解为什么将近似值取极限正好是面积的精确值。
二、对学数学的反思
对于在数学课堂上的每一位学生来说,他们的头脑并不是一张白纸 —— 对数学有着自己的认识和感受。不应把他们看着 “ 空的容器 ” ,按照自己的意思往这些 “ 空的容器 ” 里 “ 灌输数学 ” 。这样常会进入误区,师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。应该怎样对学生进行教学 , 常常说要因材施教 、可实际教学中 , 又用一样的标准去衡量每一位学生 , 要求每一位学生都应该掌握所讲知识 、这也许是自己一直以来教学的困惑与障碍。让学生多多思考 , 在本节课中未能达到预设目标 ,仍有“满堂灌”之嫌 。