数学教案-圆的认识一【精简3篇】
数学教案-圆的认识一 篇一
圆的定义与性质
在数学中,圆是一个非常基础且重要的几何形状。圆是一个平面上所有到一个给定点(圆心)的距离相等的点的集合。在圆中,距离圆心的距离称为半径,而整个圆的长度称为直径,直径是半径的两倍。
圆的性质有很多,其中一些包括:
1. 圆的直径是圆的最长线段,且直径的长度等于半径的两倍。
2. 圆的周长是圆的边界的长度,通常用符号C表示,计算公式为C=2πr,其中r是圆的半径。
3. 圆的面积是圆内部的所有点的集合,通常用符号A表示,计算公式为A=πr2,其中r是圆的半径。
4. 圆的弧是圆上的一段曲线,弧长是从一个点到另一个点的距离,通常用符号s表示,计算公式为s=rθ,其中r是圆的半径,θ是弧所对的圆心角的度数。
5. 圆的扇形是由半径和圆的弧组成的区域,扇形的面积可以通过扇形的圆心角度数和半径求得。
通过了解这些基本的圆的性质,我们可以更好地理解圆的特点,进而应用到解决实际问题中。在接下来的学习中,我们将深入探讨圆的更多性质和应用,帮助学生更好地掌握这一重要的几何形状。
数学教案-圆的认识一 篇二
圆的应用与实际问题
圆作为一个基本的几何形状,在我们的日常生活中有着广泛的应用。从建筑设计到自然科学,圆都扮演着重要的角色。以下是一些圆在实际问题中的应用:
1. 圆在建筑设计中的应用:建筑设计中经常会用到圆形的结构,比如圆形拱门、圆形窗户等。圆形结构能够提供更好的支撑力,同时也美观大方。
2. 圆在工程测量中的应用:在工程测量中,经常需要用到圆形的测量工具,比如圆规、量角器等。这些工具可以帮助工程师准确测量和绘制圆形结构。
3. 圆在科学研究中的应用:在自然科学研究中,圆形结构也有着重要的应用。比如在天文学中,行星的运动轨迹就是近似圆形的,圆的性质能够帮助科学家研究行星运动规律。
4. 圆在日常生活中的应用:在日常生活中,我们也经常会遇到圆的应用,比如圆形的钟表、圆桌、圆形的轮胎等。这些都是圆形结构为我们带来的便利和美好。
通过了解圆在实际问题中的应用,我们可以更好地理解圆的重要性和实用性。在学习中,我们除了掌握圆的基本性质外,更需要了解如何将这些性质运用到解决实际问题中,提高我们的数学素养和解决问题的能力。希望通过本节课的学习,学生们能够对圆有一个更深入的认识,为以后的学习打下坚实的基础。
数学教案-圆的认识一 篇三
数学教案-圆的认识(一)
教案点评:
采用游戏引入的形式,寓教于乐,即感知了圆的形成过程,渗透了集合思想,初步领悟了画圆的要领,同时密切了师生情感。根据几何知识的特点和儿童的认知规律,通过看、想、说、画、议等形式多种感官参与学习的实践活动。不但从感性到理性认识了圆,同时还发展了空间想像力、动手操作能力和口头表达能力。
教学目标
1.使学生认识圆,知道圆的各部分名称.
2.使学生掌握
圆的特征,理解和掌握在同一个圆里半径和直径的关系.3.初步学会用圆规画圆,培养学生的作图能力.
4.培养学生观察、分析、抽象、概括等思维能力.
教学重点
理解和掌握圆的特征,学会用圆规画圆的方法.
教学难点
理解圆上的概念,归纳圆的特征.
教学过程
一、铺垫孕伏
(一)教师用投影出示下面的图形
1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?
2.教师指出:我们把这样的图形叫做平面上的直线图形.
(二)教师演示
一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来.
1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)
2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识.(板书课题:圆的认识)
二、探究新知
(一)教师让学生举例说明周围哪些物体上有圆.
(二)认识圆的各部分名称和圆的特征.
1.学生拿出圆的学具.
2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)
教师说明:圆是平面上的一种曲线图形.
3.通过具体操作,来认识一下圆的各部分名称和圆的特征.
(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次.
教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)
仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)
教师指出:我们把圆中心的这一点叫做圆心.圆心一般用字母 表示.
教师板书:圆心
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
(圆心到圆上任意一点的距离都相等)
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母 表示.(教师在圆内画出一条半径,并板书:半径 )
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等.
(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径.直径一般用字母 来表示.(教师在圆内画出一条直径,并板书:直径 )
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的.长度都相等吗?
教师板书:在同一个圆里有无数条直径,所有直径的长度都相等.
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的
长度都相等;有无数条直径,所有直径的长度也都相等.
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍.
(三)反馈练习.
1.用彩色笔标出下面各圆的半径和直径.
2.填表.
r(米)
0.241.422.6d(米)
0.861.04(四)圆的画法.
根据圆心到圆上任意一点的距离都相等这一特征,我们可以用圆规来画圆.
1.学生自学
2.教师示范画圆.
3.教师归纳板书:1.定半径;2.定圆心;3.旋转一周.
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚.
4.学生练习
(五)教师提问
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?
教师板书:半径决定圆的大小,圆心决定圆的位置.
(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
三、全课小结
这节课我们学习了什么?通过这节课的学习你有什么收获?
四、课堂练习
(一)判断
1.画圆时,圆规两脚间的距离是半径的长度.( )
2.两端都在圆上的线段,叫做直径.( )
3.圆心到圆上任意一点的距离都相等.( )
4.半径2厘米的圆比直径3厘米的圆大.( )
5.所有圆的半径都相等.( )
6.在同一个圆里,半径是直径的 .( )
7.在同一个圆里,所有直径的长度都相等.( )
8.两条半径可以组成一条直径.( )
五、课后作业
(一)按下面的要求,用圆规画圆.
1.半径2厘米.
2.半径2.5厘米.
3.直径8厘米.
(二)怎样测量没有圆心的圆的直径?
六、板书设计
数学教案-圆的认识(一)